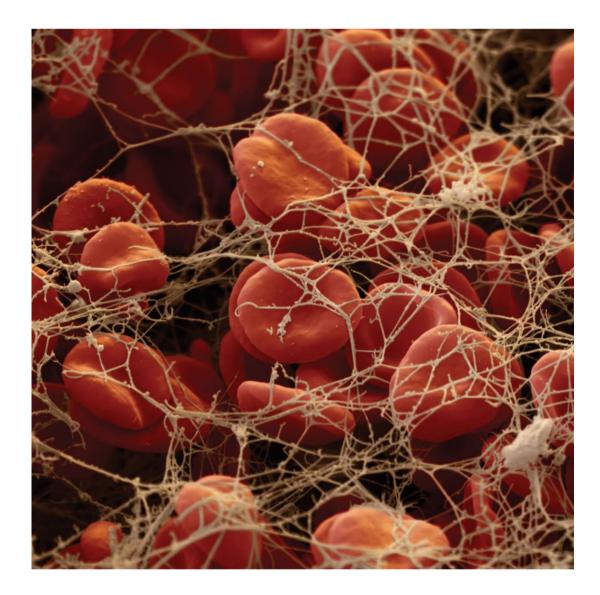
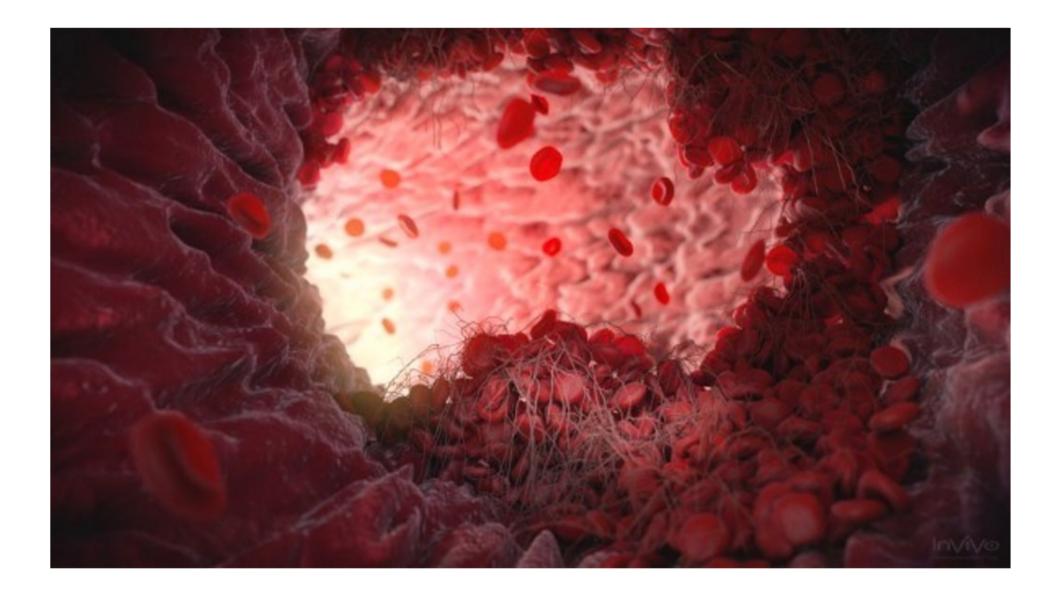


Treatment Options and How They Work


Robin Offord


Director of Clinical Pharmacy UCL Hospitals NHS Foundation Trust

robin.offord@uclh.nhs.uk

Introducing the term anticoagulant . . .

- What they do
 - Inhibit the effect of the body's own procoagulant clotting proteins
 - Reduce the risk of clot growth or embolism
 - Embolism = Fragments of clot breaking off and lodging elsewhere
 - Allow the body's clot lysis (breakdown) process to take effect
- What they don't do
 - Dissolve a clot that already exists

Treatment of venous thromboembolism (VTE)

- May start with an injectable agent (usually a heparin; occasionally an alternative)
 - For rapid onset of effect
- Once stable, typically convert to an oral agent (warfarin or a DOAC)
 - For longer-term convenience
- Historically patients would be treated in hospitals
- Now routinely managed in the community (at home)
 - Occasional outpatient attendances

Heparin (unfractionated heparin, or UFH)

- Discovered by a second year medical student in 1916
- Originally derived from canine liver tissue Hence the name
- First clinical trials did not take place until 1935
- Works as a catalyst for a natural anticoagulant Antithrombin
- Effect can be monitored using a test, called aPTT
- Can also be reversed using a substance called protamine

Difficulties with heparin (UFH) treatment

- Needs to be given by infusion or regular subcutaneous injections
 - Short half-life
- Unpredictable effect, requiring frequent aPTT tests
 - Binds to and interacts with various circulating proteins
 - Cleared from the body via a number of mechanisms
- Rare but very significant side effects
 - Heparin-induced thrombocytopenia

Low Molecular Weight Heparins (LMWH)

- Significant advantages over UFH
 - Once or twice daily subcutaneous injections
 - Predictable response No need for monitoring
 - Lower risk of HIT
- Some disadvantages
 - Requires dose alteration in kidney disease
 - Longer half-life may prolong bleeding, if it occurs
 - Only partially reversed by protamine
 - Still relatively expensive (outside hospitals)

LMWHs

- Enoxaparin (Clexane®)
- Dalteparin (Fragmin[®])
- Tinzaparin (Innohep®)

Warfarin

- Derived from a chemical found in clover and many other plants
- Originally used in the late 1940s as a pesticide 'Rat poison'
- Developed for medical use by the University of Wisconsin
 - Work funded by the Wisconsin Alumni Research Foundation
- Licensed as a medicine for human use in 1954
- Prevents the formation of vitamin K dependent clotting factors
 - Factors II, XVII, IX and X
 - Also some natural anticoagulants Proteins C and S

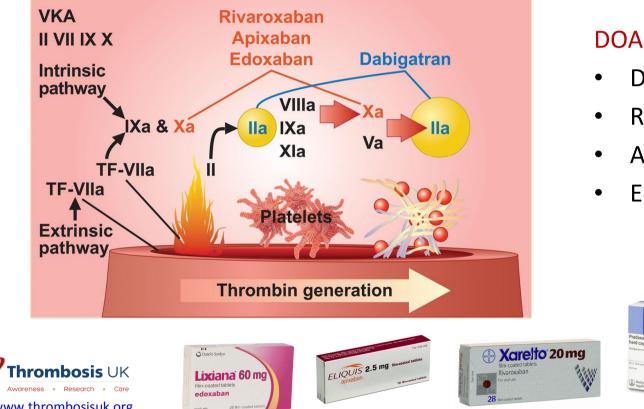
Warfarin – Pros and Cons

Pros	Cons
More than sixty years of experience	Unpredictable Dose response varies between people
Licensed in a wide range of indications	Narrow therapeutic index
It works!! (with caveats)	Lots of drug and food interactions
INR correlates with effect Can be used in patients with different risks	Frequent blood monitoring (INR tests)
Effective reversal agent (Vitamin K)	Slow onset of action
Relatively few non-bleeding side effects	Long duration of action

Where we are ...

The potential of the Direct Oral Anticoagulants (DOACs)

Properties of an ideal anticoagulant


- Safe at a wide range of doses
- Predictable response, without laboratory monitoring
- Can be given by mouth or via a vein
- Works quickly after a dose
- Safe antidote available
- No non-anticoagulant side effects
- No interactions with other drugs

Hirsh J, *et al*. Blood 2005; **105**: 453-463 King CS, *et al*. Chest 2013; **143**(4): 1106–1116

DOACs – Direct Oral Anticoagulants

DOACs

- Dabigatran (Pradaxa[®])
- Rivaroxaban (Xarelto®)
- Apixaban (Eliquis[®])
- Edoxaban (Lixiana®)

Warfarin v DOACs

As effective as warfarin in reducing VTE recurrence, with potential benefits:

	Warfarin	DOACs	
Onset	Slow Rapid		
Dosing	Variable Fixed		
Food interactions	Yes	Rivaroxaban only	
Drug interactions	Many	Few(-ish)	
Monitoring required	Yes	No	
Offset	Long	Shorter	
Reversal	Straightforward	Complex	

Factors taken into account when prescribing an anticoagulant

Factors	Options	
Cancer	low molecular weight heparin	
Parenteral therapy to be avoided	rivaroxaban, apixaban	
Once daily therapy preferred	rivaroxaban, edoxaban, warfarin	
Liver disease and coagulopathy	LMWH	
Kidney disease and creatinine clearance <30 mL/min	Warfarin	
Coronary artery disease	warfarin, rivaroxaban, apixaban, edoxaban	
Dyspepsia or history of GI bleeding	warfarin, apixaban	
Poor compliance	warfarin (perhaps)	
Thrombolytic therapy use	Heparin infusion	
Reversal agent needed	warfarin or heparin	
Pregnancy or pregnancy risk	low molecular weight heparin	
Range of licensed indications	Favours older products	

Antithrombotic Therapy for VTE Disease Chest 2016; **149**(2): 315-352

Pharmacokinetics of the DOACs

Adapted from: EHRA Practical Guide – NOACs in NVAF Europace (2013); **15**: 625–651

	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Bioavailability	3-7 %	66 % without food	50 %	62 %
		Almost 100 % with food		
Pro-drug?	Yes	No	No	No
Renal clearance of absorbed dose	80 %	35 %	27 %	50 %
(normal renal function)		36 % Unchanged – Remainder inactive metabolites	Mostly unchanged	Almost entirely unchanged
Liver metabolism	No	Yes (partly CYP3A4)	Yes (CYP3A4 major contributor)	Minimal (<4 %)
Substrate of CYP3A4?	No	Yes	Yes	No
Substrate of P-glycoprotein (P-gp)?	Yes	Yes	Yes	Yes
Protein binding	35 % (active dabigatran)	92-95 %	87 %	55 %
Absorption with food	No effect	+ 39 %	No effect	+ 6-22 %
Intake with food recommended?	No	Mandatory	No	No
Absorption with H ₂ B/PPI	- 12-30 %	No effect	No effect	No effect
Asian ethnicity	+ 25 %	No effect	No effect	No effect
GI tolerability	Dyspepsia 5-10 %	No problem	No problem	No problem
Elimination half-life	12-17 h	5-9 h (young); 11-13 h (elderly)	12 h	9-11 h

Aspirin

- Possible role in patients with:
 - First unprovoked VTE who did not have an increased risk of bleeding
 - Completed 3 to 18 months of anticoagulant therapy
- Reduces recurrent VTE by about one-third
- However, DOACs in the same patient group reduce recurrence by 80%
 - Similar bleeding risk in extended therapy

WARFASA. N Engl J Med 2012; **366**(21): 1959-1967 ASPIRE. N Engl J Med 2012; **367**(21): 1979-1987 INSPIRE. Circulation 2014; **130**(13): 1062-1071

Treatment Duration

Type of VTE	Recommendation	
Provoked proximal DVT of leg or PE	3 months	
Provoked isolated distal DVT of leg	3 months	
Unprovoked isolated DVT of leg or PE	At least 3 months	
First unprovoked proximal DVT of leg or PE and low to moderate bleeding risk	Extended	
First unprovoked proximal DVT of leg or PE and high bleeding risk	3 months	
Second unprovoked VTE and low to moderate bleeding risk	Extended	
Second unprovoked VTE and high bleeding risk	3 months	
VTE and active cancer	Extended	

Antithrombotic Therapy for VTE Disease Chest 2016; **149**(2): 315-352

